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Abstract

Spare cells rewiring is a technique used to fix defects or deficiencies after the

placement stage. It is traditionally done by manual work but becomes extremely

hard nowadays. In this thesis, we propose the first spare cells selection algorithm

consisting of two phases to optimize timing of the circuit by rewiring spare cells.

In the first phase, we apply gate sizing and buffer insertion to all timing violated

paths to fix timing violations. In the second phase we further fix timing violations

by extracting timing critical parts and apply technology remapping to them. Ex-

perimental results based on five industrial benchmarks show that our algorithm can

fix up to 99.82% of the total negative slack, and the runtime is very short. The

experimental results show that our algorithm is efficient and effective.
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Chapter 1

Introduction

In this chapter, we introduce the ECO timing optimization problem and the spare

cells rewiring technique. Related work and our contributions are also included in

this chapter, and the organization of this thesis is in the last part.

1.1 Using Spare Cells to Optimize Timing

ECO (Engineering Change Order) is usually performed during the chip im-

plementation cycle. If engineers need to change only a small portion of the netlist in

a very short time, running the traditional back-end design flow to the whole netlist

is very time-consuming. The most efficient way is to change the netlist locally with-

out affecting other parts of the chip. Using spare cells is a good choice for this

purpose because rewiring the circuit by spare cells can change the netlist without

changing the chip placement. Engineers do not need to run placement tools to place

the netlist after the re-wiring process. Since timing closure is hard to be achieved

in today’s nanometer designs and engineers have to run the back-end design flow

many times to meet timing constraints, using spare cells to do netlist changes can

save a lot of time and effort. Besides, if masks are already produced before netlist

change, rewiring the netlist using spare cells only needs the masks of the routing

layers to be re-produced. This will save a large amount of production cost because

1
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masks are quite expensive in the nanometer process.
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Figure 1.1: (a) ECO paths before rewiring. (b) ECO paths after rewiring.

Although spare cells rewiring is a very effective ECO technique, using it to

fix timing deficiencies is getting tougher and tougher nowadays. This is because the

local netlist change cannot consider its effect on the circuit timing and makes the

circuit fail to achieve timing closure. Additionally, increasing of the gate count of

chip designs also makes the problem substantially harder. Thus we need an efficient

algorithm to deal with the problem of timing optimization by spare cells.
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Figure 1.1 shows an instance of timing optimization by rewiring spare cells.

The AND gate ANDX4 and BUFFER gate BUFX1 are spare cells and not connected

to any path. Gate DFF1, gate DFF2, gate DFF3, and gate DFF4 are D flip-flops.

They are start points and end points of path 1 and path 2. Arrival times of DFF2

and DFF4 are larger than the clock cycle, and the timing of path 1 and path 2

needs to be fixed by ECO. Thus we call these two timing violated paths ECO paths.

We can improve the timing of ECO path 1 by inserting the adjacent BUFFER gate

BUFX1 in that path to help driving the load. To fix the timing of ECO path 2,

we can use the AND gate ANDX4 instead of the AND gate ANDX2 on ECO path

2 because ANDX4 has a larger driving capability. After the sizing and buffering

operations, both ECO paths meet the timing constraints. The AND gate ANDX2

is now released from the netlist and becomes a spare cell.

Spare cells are designed for further design changes, and are evenly placed

on the chip layout. The type and number of spare cells vary from different chip

characteristics, and are usually determined empirically. The number of spare cells

is usually small compared to other standard cells. Thus using spare cells to perform

ECO operations needs to consider the resource sharing problem. Figure 1.2 by [5]

shows the spare cells placement. The spare cells are plotted as white points, and

they are spread throughout the standard cell area for good performance.

1.2 Previous Work

Spare cells selection is a very common technique in industrial designs, and

it was traditionally done by manual labor. Since the gate count of a chip design is

increasing and timing closure is more and more difficult to be achieved, this problem

becomes so tough that it can no longer be solved by manual ways.
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Figure 1.2: Spare cells placement.

To the best knowledge of the authors, there is still no published literature

for the ECO timing optimization by spare cells. There are two topics related to this

problem: (1) buffer insertion and gate sizing problem, and (2) physical and logic

co-synthesis.

1.2.1 Buffer Insertion and Gate Sizing

Buffer insertion is a well-known technique for timing optimization. It can

not only reduce the path delay but also eliminate signal noise. Authors of [6] pro-

posed a dynamic programming method for the buffer insertion problem. When the

candidate buffer locations of a signal net are known, the dynamic programming
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method (VGDP) can find the maximum timing slack solution in quadratic time.

Many works are proposed based on this method, and they can be grouped into

three categories: (1) net based buffer insertion algorithms, (2) network based buffer

insertion algorithms, and (3) path based buffer insertion algorithms.

Net based buffer insertion algorithms find optimal buffer solutions in each

signal net. Buffer insertion is performed on each net individually. This method is

simple and previous works have shown excellent theoretical results. Authors of [27]

reduced the timing complexity from O(n2) of [6] to O(n log n), where n is the number

of candidate buffer locations. In [7] they further proposed a method to insert buffers

into nets of m sinks in O(mn) time. Although this method can get a good result for

a single net, it lacks the global information of the whole circuit. Figure 1.3 shows an

example. There are two nets, Net 1 and Net 2, along a critical path of the circuit. If

we perform buffer insertion to Net 2 first and use 4 buffers, then we do not need to

insert buffers into Net 1 because the timing constraints are already met. However,

if we insert one buffer into both Net 1 and Net 2, we can get a solution meeting

the constraints by using fewer buffers. Net-based buffer insertion methods usually

result in sub-optimal solutions because of over-consuming buffer resource.

Network based buffer insertion algorithms [14] [15] use a directed acyclic

graph (DAG) to represent the circuit, and apply Lagrangian relaxation to translate

the timing constraints to costs of the objective function. This method can find a

global buffering solution but usually has a large run time, especially for industrial

benchmarks.

Path-Based buffer insertion method [28] considers buffering and gate sizing

from a global view. Nets on a timing violated path are merged, and the whole path

looks like a big routing tree. Then buffering and sizing operations are performed to

the path like van Ginneken’s algorithm.
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Figure 1.3: (a) Net-based buffer insertion may be trapped in a local optimal solution.
(b) A better buffering solution.

1.2.2 Physical and Logic Co-Synthesis

Logic synthesis and placement are two important stages of the IC design flow.

Logic synthesis tools translate functions into logic gates, and placement tools place

them on the chip layout. Since the logic synthesis tools do not have the information

of exact positions of gates, they cannot fully optimize the circuits in the right way.

On the other hand, placement tools have limited flexibility to optimize because

they cannot change the circuit netlist. Thus combining the two stages has been an
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Figure 1.4: (a) Layout driven logic synthesis flow. (b) Local netlist transformation
flow.

attractive topic in recent years. Previous works can be grouped into two categories:

(1) layout driven logic synthesis, and (2) local netlist transformation.

Layout driven logic synthesis methods [11], [12], [23], and [25] generate an

initial placement of the technology-independent netlist first, and then optimize the

netlist using the coordinates given by the initial placement. The accuracy of these

methods is not guaranteed because the final placement is likely to be much different

from the initial placement. The design flow of layout driven logic synthesis is shown

in Figure 1.4 (a).

Local netlist transformation methods [18] [22] work on a placed netlist. They
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focus on different objectives such as timing or power. Critical parts of the placed

netlist are extracted, re-synthesized according to the target objective, and then re-

placed. This method preserves the existing placement as much as possible. Local

netlist transformation flow is shown in Figure 1.4 (b).

1.3 Our Contributions

To our best knowledge, this thesis is the first work for the ECO timing op-

timization by spare cells rewiring. The major difference between this problem and

the traditional buffer insertion problem is the cost metric. The traditional buffer

insertion problem is to insert buffers at some candidate locations. These candi-

date locations are not related to the placement and the placement after buffering

may overlap. The cost of buffering is known, such as area overhead or buffer de-

lay. The ECO timing optimization problem considers re-wiring the netlist with

spare cells, and all spare cells are the candidate buffering/sizing locations for each

net/gate. Since every spare cell becomes a normal standard cell if it is rewired

to the netlist, the candidate buffering locations of each net vary along the opti-

mization process. Thus the buffering/sizing cost is dynamic, making this problem

much harder than the traditional buffer insertion problems. We propose a dynamic

programming method considering such dynamic cost, and so we call our algorithm

“Dynamic Cost Programming (DCP)”.

Our spare cells selection algorithm consists of two phases. The first phase

is buffer insertion and gate sizing. We iteratively perform buffer insertion and gate

sizing simultaneously to the ECO paths. This loop terminates until all timing

violations of ECO paths are fixed or every timing violated ECO path cannot be

further optimized. We also propose several heuristics to reduce the solution size

during dynamic cost programming.
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The second phase is technology remapping. We extract timing critical parts

of the ECO paths and remap it using spare cells. From our proposed optimization

flow, our method can be smoothly integrated into commercial a design flow. Exper-

imental results show that our algorithm can fix almost all of the timing deficiencies

in a short CPU time.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 gives the prelimi-

naries of this thesis and the formulation of the ECO timing optimization problem.

In Chapter 3, we detail our algorithm, including the buffer insertion, gate sizing

and technology remapping. Chapter 4 shows the experimental results. Finally,

conclusions and the future work are given in Chapter 5.



Chapter 2

Preliminaries

In this chapter, we introduce the dynamic programming framework for buffer inser-

tion [6],and the path-based buffer insertion algorithm [28]. The timing model used

in this thesis is also detailed here.

2.1 The Timing Model

We apply the Synopsys .lib timing model to evaluate the circuit timing.

Although the wire length is the commonest cost metric during placement, we can

use a more accurate timing model because the placement is fixed and all cells’

locations are known. The Synopsys .lib timing model combines wire loading and

gate input capacitance with gate driving loading. The coordinate of a gate gi is

denoted as pi(xi, yi). The relation between fanout wirelength of a gate gi and its

corresponding capacitance loading value Cwi is shown below:

Cwi =
∑

gj∈fanouts of gi

(|xi − xj|+ |yi − yj|)× φ. (2.1)

φ is the amount of capacitance from per unit wirelength. Then the capaci-

tance loading of a gate gi can be defined as:

Ci = Cwi + (output pin capacitance of gi)

10
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+
∑

gj∈fanout of gi

(input pin capacitance of gj). (2.2)

The delay and output transition time of a gate are functions of its input

transition time and output driving capacitance, and the functions are characterized

by lookup tables. An example of the lookup table for a gate’s delay when the output

signal is falling is shown in Figure 2.1.

Output capacitive loading

In
p

u
t T

ra
n

sitio
n

 T
im

e

Figure 2.1: Lookup table example.

It is obvious that if a gate and its fanouts are far away, the gate must have a

large delay due to its large capacitance loading. The timing path delay is the sum

of delays of all gates on the timing path.

There are several properties of this timing model:

1. Loading domination: For a gate gi, the effect of the output loading to the gate

delay is much larger than that of the input transition time.

2. Shielding: If two gates, gi and gj, on the same ECO path are not directly

connected, and gi is former in the path than gj, then gate sizing to gj does
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not affect the gate delay of gi. On the other hand, gate sizing to gi has only

a little effect to gi because of loading domination.

The first property is summarized from the technology data empirically. This

is important because during our optimization process we only know one factor among

the output loading and the input slope when calculating the gate delay. We assume

a value to the input slope while we have an exact output loading value to get an

approximated gate delay. The delay calculated in this way is more accurate than

the case that output loading is an assumed value and the input slope is known.

The second property means that changing one part of the ECO path by gate

sizing and buffering does little effect on timing of the unchanged part. It facilitates

us to judge one operation by its local delay effect other than its global delay effect.

This will speed up the algorithm greatly. Figure 2.2 shows a conceptional example.

2.2 Dynamic Programming Framework

A signal net consists of one source (gs) and several sinks (gt). Given the

candidate buffer locations of a net, authors of [6] proposed a dynamic programming

method to get an slack optimum buffering solution.

All possible assignment of buffers are called pair options. Every pair option

is evaluated by the capacitance loading seen from the upstream and the required

arrival time (RAT). A pair option pi is dominated by another pair option pj if the

required arrival time of pi is smaller than that of pj and the capacitance loading of

pi is larger than that of pj.

The method starts from the sinks and ends at the source. At each candidate

location new pair options are added. If two sub-trees merge, pair options of both

sub-trees are also merged. Since dominated pair options are canceled during the
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gi

gjgk

gi
gj

Delay

variation

Figure 2.2: The gate gk serves as a barrier and mitigates the delay variation of gi

and gj due due to changes of the other gate.

buffering process, the dynamic programming method guarantees that every reserved

pair option of a tree is slack optimal under the loading value.

Figure 2.3 is an buffering example. From the sinks to the source we calcu-

late all possible buffering assignment and store non-dominated assignments as pair

options at every candidate location and tree branch. The set of pair options at the

root of the tree are the slack optimal buffer assignments under their loading value.

The whole algorithm is shown in Figure 2.4.
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Figure 2.3: Solutions of the dynamic programming framework.

2.3 Path-based Buffer Insertion

While the algorithm in [6] is to insert buffers into one net each time, the

path-based buffer insertion method in [28] considers insert buffers to nets of a path

concurrently.

This method is done by five steps:

1. Identify k most critical paths of the circuit by STA.

2. Cut those k paths into k′ distinct paths.

3. Every path is viewed as a big routing tree, and gates on the path are treated

as special type buffering locations that special buffers must be inserted into.

4. The special type buffers have the same input/output characteristics as the

corresponding gates.
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Algorithm: VGDP(k)
1 begin if isleaf(k)
2 then Z=pair options of k
3 else
4 begin
5 Z1=VGDP(left(k));
6 Z2=VGDP(right(k));
7 Z=Z1

⋃
Z2; (merge pair options of two sub-trees)

8 add wire delays to pair options in Z;
8 update pair options in Z by inserting wires;
9 add buffer option to Z;
10 end
11 end

Figure 2.4: Dynamic programming framework.

5. The van Ginneken’s algorithm is applied to each routing tree sequentially.

Figure 2.5 illustrates the steps. The two most critical paths are P1{g1, g4, g7,

g11, g12, g14} and P2{g1, g4, g7, g8, g10, g12, g14}. We cut the two paths into two distinct

paths P ′
1{g1, g4, g7, g11, g12, g14} and P ′

2{g8, g10}. They are shown in Figure 2.5 (b).

In Figure 2.5 (c), nets of each distinct path are merged into a routing tree and the

gates on the routing tree are treated as special type buffering locations which must

be inserted buffers later.

During the van Ginneken’s algorithm for each routing tree, we force the soft-

ware to insert buffers at every special buffering location. These buffering operations

are equivalent to the gate sizing operations to the gates corresponding to special

buffering locations. Then we can apply gate sizing and buffer insertion simultane-

ously.

Since the timing paths may be cut into routing trees during the step 2,

the timing information of every routing tree are not known to each other during
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optimization. In Figure 2.5 (c), if we optimize the path P ′
1 first, we can find a

buffering solution making P ′
1 meet timing constraints. However, the path P2 may still

violate the timing constraints even if we choose a slack optimum buffering assignment

to P ′
2. This is because the sub-paths {g1, g4, g7} and {g12, g14} are not considered

with regard to P ′
2 during optimization to P ′

1, and the buffering assignments of these

sub-paths are not good enough to P ′
2.

The authors proposed a method to solve the above problem. Since the slack

of the slack optimum buffering to the path must be larger than or equal to zero,

we can distribute the positive slack as “useful slack” to each net along the path. It

means that we do not need to choose a slack optimum buffer assignment in every

sub-path. This idea will control the delay of every sub-path within a reasonable

value. It can reduce the number of inserted buffers because the buffering efficiency

decreases when we insert more buffers to a net to further reduce the delay. The idea

is shown in Figure 2.6.

2.4 Problem Formulation

In this section, we introduce the notations used in this thesis and the problem

formulation. A timing path is defined as (1) a path from one primary input to one

primary output, (2) a path from one primary input to one D flip-flop input pin,

(3) a path from one D flip-flop output pin to one primary output, and (4) a path

between one D flip-flop output pin and one D flip-flop input pin. An ECO path is

a timing path which violates the timing constraints and we are going to fix it by

spare cell rewiring. We denote the start point of a ECO path as the D flip-flop or

the primary input at the beginning of the ECO path. We also denote the end point

of a ECO path as the D flip-flop or the primary output at the end of the ECO path.

Figure 2.7 (a) shows the modeling of the ECO path. Let N be the set of nets of the
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delay

#  inserted 

buffers

Efficiency: delay decrease per 

inserted buffer (slope)

(a)

(b)

buffers

Figure 2.6: (a) Inserting buffers into a net. (b) The efficiency decreases if more
buffers are inserted.

netlist and NE be set of nets of the ECO paths. Let G be the set of all standard

cells. We denote GE as the cells on the ECO paths, and GS as the spare cells. The

coordinate of a gate gi is denoted as pi(xi, yi). We define the buffering and sizing

operations below.

Definition 2.1 A buffering operation is to insert a buffer type spare cell gS
i into a

net nE
j in the ECO paths. A gate sizing operation is to exchange a spare cell gS

i with

a gate gE
j in the ECO paths by rewiring.

Definition 2.2 The delay of a gate gi is delay(gi) while the delay of gi after sizing

or buffering operations is delay′(gi).
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During our optimization process, we generate many solutions. A solution

can be formally defined as follows:

Definition 2.3 The target gate of a solution is a gate on the ECO path and this

gate is being considered to be sized or buffered.

Definition 2.4 The scope of a solution is a sub-path between the ECO path end

point and the target gate. The delay of the scope is the sum of delays of the gates in

the scope.

Definition 2.5 A solution is a set of gate sizing and buffering operations to gates

and nets in its scope. The cost of a solution is the sum of delays of gates in the

scope if operations of the solution are performed.

Figure 2.7 (b) shows a solution S1 corresponding to the ECO path shown

in Figure 2.7 (a). Solution S1 consists of one buffering operation and one sizing

operation. The scope of S1 is the sub-path between gE
2 and gE

5 , and the cost of S1

is the sum of delays of gE
2 , gE

1 , gE
4 , gE

3 , and gE
5 . Another solution S2 is shown in

Figure 2.7 (c) with the same scope, the cost of S2 is the sum of delays of gates in

the scope after inserting two buffers.

At the end of the optimization process, we get a set of solutions which scope

is the whole ECO path and the cost is the ECO path delay. We choose a solution

meeting timing constraints that uses minimum number of buffers as our final solu-

tion. Operations of the final solution are performed to the ECO path and STA is

re-run to update the timing information.

Based on the definition above, the ECO timing optimization problem can be

formally defined as the follows:
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Problem 2.1 Given a netlist after ECO process, the ECO timing optimization

problem is to re-wire the netlist using spare cells GS so that the netlist meets the

timing constraints, and the functionality of the netlist cannot be unchanged.
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Figure 2.7: (a) The model of ECO paths. (b) Solution S1. (c) Solution S2.



Chapter 3

The Spare Cells Selection Algorithm

In this chapter, we present our spare cells selection algorithm for the ECO timing

optimization problem. First we give the overview of our algorithm and the opti-

mization flow. Then we detail the methods used in each phase.

3.1 Algorithm Overview

We propose a two-phase flow to solve the ECO timing optimization problem.

The input information is a placed netlist with some timing violations. We use static

timing analysis (STA) to identify those timing violated paths as ECO paths. Then

we enter the first phase.

In the first phase we iteratively choose the ECO path with the largest negative

slack and optimize it by gate sizing and buffering operations. Since ECO paths are

usually overlapped, we update netlist and timing information of all ECO paths

after optimization to one of them. If the processed path is not improved after

optimization, we put it into a denied list. It means that this path can not be

improved under the current netlist and the condition of spare cells. Then we choose

the ECO path whose negative slack is the largest among all ECO paths not in

the denied list and optimize it. Whenever timing of an ECO path is improved,

we clear the denied list to make paths in the denied list be able to be optimized

22
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again. This is because the optimization of one ECO path may change the spare cells

resource or modify path structure of some paths in the denied list. This criterion

prevents us from continuously trying to optimize an ECO path which can not be

further improved under current situation. This loop continues until all ECO paths

meet the timing constraints or all remained timing violated ECO paths can not be

improved any more.

After the first phase, we fix most timing violations. If there are still violations

left, we forward those information to the second phase. In the second phase, we

identify timing critical parts of the netlist. Those parts are extracted from the

netlist and remapped using spare cells. The remapping process stopped when all

timing violations are fixed or no more paths can be optimized. After the second

phase, we write the optimized netlist to a DEF file, and the program terminates.

The optimization flow is shown in Figure 3.1.

3.2 Gate Sizing and Buffer Insertion

In this section, we present the Dynamic Cost Programming (DCP) algorithm

which uses the gate sizing and buffering operations to optimize a path. This algo-

rithm is named DCP because it is based on the dynamic programming framework

and considers dynamic cost. Figure 3.2 shows an overview of the DCP algorithm.

3.2.1 Delay Cost Calculation

In our optimization process, we have two timing calculation operations. The

first one is the Static Timing Analysis (STA), which is a well known technique. The

second one is applied during dynamic cost programming, and is different from STA

because it only calculates the timing of a small region. We detail the second timing

calculation operation in the following paragraphs.



24

Select the ECO 

path not in the 

denied list and 

with smallest 

slack

Gate sizing & 

Buffer insertion 

(DCP)

Put the path 

into denied 

list

YESNO

All ECO paths with 

slack<0 are in the 

denied list? 

NO

All ECO paths

slack 0 or remapping is 

useless

Identify critical 

parts of ECO paths

Extract critical 

parts and 

remapping

YES

Finish

Synopsys .lib 

file
DEF file 

All ECO paths

slack 0

NO

Clear the 

denied list

YES

YES

NO

Static Timing 

Analysis

(identifying ECO 

paths) Static Timing 

Analysis

(updating ECO 

paths)

Static Timing 

Analysis

(updating ECO 

paths)

Is the path delay 

improved?

Phase 1

Phase 2

Figure 3.1: The ECO timing optimization flow.

From the Synopsys .lib timing model, we have two observations for our ECO

timing optimization problem:

1. The buffering to the net nE
i changes the delay of the source gate of nE

i , gE
i ,
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Algorithm: Dynamic Cost Programming(P , GS,NE,GE)
P : the ECO path to be optimized;
GS : set of all spare cells;
NE{nE

1 , ..., nE
M−1}: set of all nets on the target ECO path;

GE{gE
1 , ..., gE

M}: set of all cells on the target ECO path;
M : size of GE

SN
i : set of solutions stored for buffering net nE

i

SG
i : set of solutions stored for sizing gate gE

i

1 begin
2 Merge GE and fanouts of {gE

1 , ..., gE
M−1} into a routing tree

3 for i = M − 1 → 2
4 for all buffer type spare cells {gS

i } in the bounding box of nE
i

5 apply buffer insertion to nE
i using gS

i based on SG
i+1

6 store the assignment in SN
i if delay’(gE

i )+delay’(gS
i )<

7 delay(gE
i )

8 prune the solutions in SN
i

9 for all spare cells {gS
i } with type same as gE

i in the bounding
10 polygon of gE

i

11 apply gate sizing to gE
i using gS

i based on SN
i

12 store the assignment in SG
i if delay’(gE

i−1)<delay(gE
i−1)

13 & delay’(gE
i−1)+delay’(gS

i )<delay(gE
i−1)+delay(gE

i )
14 prune the solutions in SG

i

15 for all buffer type spare cells {gS
i } in the bounding box of nE

1

16 apply buffer insertion to nE
1 using gS

i based on SG
2

17 store the assignment in SN
1 if delay’(gE

1 )+delay’(gS
i )<delay(gE

1 )
18 choose the solution in SN

1 that meets the timing constraints and uses
19 fewest buffers, and rewire the netlist according to the solution
20 end

Figure 3.2: Overview of the DCP algorithm.

while other gates are little affected or not affected. Thus the effect of buffering

to the timing is the delay change of gE
i and the delay increase of the inserted

buffer.

2. The sizing to the gate gE
i changes the delay of the fanin gates of gE

i , {gE
j },

while other gates are little affected or not affected. Thus the effect of sizing
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gE
i to the timing is the delay change of {gE

j } and the sized gate.

Based on the description above, we can evaluate the effect of buffering and

sizing by calculating delay of the changed part of the path without applying STA

to the whole path.

It is important that the delay value calculated in the second operation is an

approximated value. As described in Chapter 2.1, the gate delay is a function of

the input transition time and the output loading. Since the dynamic programming

method optimizes the path along one direction, we can not know both factors of

a gate at the same time. Thus we apply dynamic programming method from the

end point of the ECO path to the start point of the ECO path. During sizing and

buffering we calculate the gate delay as cost with a known output loading value

and assume the input slope to be the calculated input slope of the gate which was

calculated by STA before the optimization to this path,

If we apply dynamic programming from the start point to the end point of

the ECO path, the gate delay is calculated with a known input slope value while the

output loading is an assumed value. Gate delays calculated in this way have larger

error because estimation error of the output loading causes larger delay variation

than that of the input slope due to loading dominatio0n property.

3.2.2 Sizing and Buffering Operations

Here we describe the overall process of the DCP algorithm.

Given an ECO path to be optimized, we merge the nets of the ECO path

into a big routing tree. Fanouts of gates along the path are also merged into the tree

because they affect the loading of the ECO path. M is the number of gates along

the ECO path. From start point to end point, gates on the ECO path are numbered
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as gE
i , i = 1 ∼ M , and nets of the path are numbered as nE

i , i = 1 ∼ M − 1.

We start applying buffering to the net nE
M−1. We try to insert one buffer in

the neighborhood into nE
M−1 and calculate the approximated delay of the driving

gate gE
M−1 of the net nE

M−1. Each possible buffering assignment is a solution whose

scope is the sub-path consisting of gE
M−1 and gE

M (the end point), and we store it if

sum of delay of the gates in its scope is smaller than the case without buffering. At

this time we only estimate the effect of buffering nE
M−1 without actually inserting a

buffer to the net. Figure 3.3 shows the result of buffering nE
M−1, (M = 5).

Since we only store the buffering solutions that reduces the delay of gE
M−1,

timing of paths that are overlapped with the ECO path by gE
M−1 will not be worse

than the case without buffering. This property is very important because we must

guarantee no timing change to unprocessed paths (ex: {gE
1 , gE

2 , gE
3 , gE

4 , g8} in Fig-

ure 3.3) when optimizing ECO paths.

Additionally, since spare cells assignment at early stage will affect the as-

signment at latter stage, the cost of buffering and sizing is dynamic. Thus we must

store a set of solutions instead of only the best one at every operation.

After buffering to nE
M−1, we apply gate sizing to gE

M−1 using nearby spare

cells with the same type as gE
M−1. Timing and loading information of every solution

stored in nE
M−1 is considered to generate new solutions for gE

M−1. For one sizing

solution, if (1) sum of new delays of gE
M−2 and the sizing spare cell is smaller than

the delay sum of gE
M−2 and gE

M−2 , and (2) delay of gE
M−2 after sizing is smaller than

the delay before sizing, we store this solution for gE
M−1.

With the second criterion like buffering nE
M−1, timing of paths overlapped

with the ECO path by gE
M−2 is no worse than the case with no sizing. Figure 3.4

shows the solutions of sizing gE
M−1, (M = 5).
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Figure 3.3: The solutions for buffering nE
4 .

Then we apply buffer insertion to nE
M−2. After buffering we size gE

M−2. We

recursively apply buffer insertion to nE
M−i, i = 1 ∼ M − 1 and gate sizing to

gE
M−i, i = 1 ∼ M − 2 one after the other until the start point is reached. During

buffering nE
i , we consider sizing solutions of the driven gate, gE

i+1, to generate new

solutions. We also calculate solutions of sizing gE
i based on buffering solutions of

the driven net nE
i .

The DCP algorithm starts from the buffering to nE
M−1 and stops at the buffer-

ing to nE
1 . Sizing operations to gE

1 and gE
M are not considered because they will in-

fluence the timing of non-ECO paths. Among the buffering solutions stored in nE
1 ,

we choose the one that makes the ECO path meet the timing constraints and use

fewest buffers as the final solution of the ECO path. We rewire the netlist according

to the operations of the final solution, and STA is run to update the circuit timing.
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3.2.3 Bounding Box for Choosing Spare Cells

When buffering to a net and sizing to a gate, we need to use spare cells

as resource. Since the amount of spare cells is large, exhaustive search for every

possible assignment is not efficient. We propose a heuristic to greatly reduce the

number of assignment during gate sizing and buffer insertion.

For the case of buffer insertion, we consider inserting a buffer into the net

nE
i along the ECO path with driving gate gE

i and driven gates {gE
j }. We generate

a square bounding box for selection. The box is centered at gE
i and the width and

height of the box is defined as below:

width =
∑

gE
j ∈fanouts of gE

i

distance(gE
i , gE

j ) (3.1)

We choose buffer type spare cells in the bounding box as candidate buffer

locations for the net nE
i . Buffer type spare cells outside the box is not considered

because they can not improve the delay of the net. The reason is described below.

If we assume that pin capacitance is much smaller than wire loading capaci-

tance, it is negligible when calculating the output loading. We also neglect the effect

of input transition time to gate delay due to the loading domination property. If a

buffer type spare cell gS
i is outside the bounding box and inserted into nE

i , gE
i must

drive a larger load than the case with no buffering. Thus gate delay of gE
i increases

because of larger loading. Since gate delay of gS
i is larger than zero, the sub-path

delay (sum of gate delays of gE
i and gS

i ) is larger than the original case that no buffer

is inserted. This means the buffer insertion does not help the path delay. Based on

the discussion, we have the following lemma.
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Lemma 3.1 Given a net nE
i with source gE

i and sinks {gE
j } to be buffered, we can

consider only buffer type spare cells located in the bounding box. The bounding box

is square and centered at gE
i with width =

∑
gE

j ∈fanouts of gE
i

distance(gE
i , gE

j ).

gE
3

gE
1

gE
2nE

1

width=dis(gE
1,g

E
2)+dis(gE

1,g
E

3), center: gE
1

Figure 3.5: The bounding boxes for NE
1 to reduce buffer assignment.

For the case of gate sizing, we have a similar conclusion for reducing spare

cell assignment. Figure 3.6 shows an example of bounding polygon.

Lemma 3.2 Given a gate gE
i with fanins {gE

j } and fanouts {gE
k } to be sized, we can

consider only spare cells with the same type as gE
i and located in the bounding poly-

gon. The bounding polygon is the union of a set of square bounding boxes of {gE
j } and

{gE
k }. A bounding boxes of gE

j is centered at gE
j with width = distance(gE

i , gE
j ). A

bounding box of gE
k is centered at gE

k with width =
∑

gE
k
∈fanouts of gE

i
distance(gE

i , gE
k ).
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Figure 3.6: (a) Bounding boxes of fanins and fanouts. (b) The union of bounding
boxes. Spare cells outside the polygon are unconsidered to size gE

1 .
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3.2.4 Solution Control

Although we carefully delete many redundant spare cells assignments during

DCP by bounding box and bounding polygon method, number of feasible spare

cells assignment is still too large. To speed up the algorithm, we propose another

heuristic to control the number of solutions during DCP.

When applying sizing/buffering operation, we generate a set of solutions

based on solutions of previous net/gate. The generated solutions can be pruned by

the two criteria:

1. The number of used buffers.

2. The delay of the scope.

Number of sized gates is not counted in the first criterion because gate sizing

operation changes a cell in GE with a spare cell in gS and does not reduce the

number of available spare cells. Thus we prefer to use gate sizing operations to fix

timing rather than buffer insertion operations. If a solution Si uses more buffers

than another solution Sj but delay of Si is larger than Sj, we can delete Si because

it is dominated by Sj.

After deleting dominated solutions, we can further prune the solutions. So-

lutions are grouped into classes according to the number of used buffers, and we

keep at most k solutions for each class. k is a user-defined parameter and can be

modified to trade solution quality with runtime.

It is important that both heuristics can not guarantee that the optimum

solution will never be deleted, but in general we can delete a lot of sub-optimal

solutions and keep the optimum one. Figure 3.7 illustrates the pruning idea.
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Figure 3.7: (a) A set of solutions. (b) Delete the dominated solutions. (c) Keep at
most k solutions for every solution class. (k=2)

3.3 Technology Remapping

After DCP, we fix timing violations by technology remapping method. This

method is to deal with the case that cannot be solved by gate sizing and buffer

insertion. For the example shown in Figure 3.8, there is an AND gate gE
1 driving a

large loading but there is no BUFFER and AND type spare cells near gE
1 . We can

use a NAND type spare cell gS
1 and an INVERTER type spare cell gS

2 to replace gE
1

and separate the loading.

The placement driven technology mapping methods in Chapter 1.2.2 first

place the base gates. Then they map the base gates according to the coordinates
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Figure 3.8: (a) An AND gate driving a large loading. (b) Map the AND gate to a
NAND gate and an INVERTER gate.

of the initial placement. Similar to the methods above, we first calculate ideal

coordinates of the base gates, and map them using this information. The remapping

method has following four steps:

1. Identify critical parts of the netlist and extract them from the netlist. We

denote the extracted gates as GM .

2. Decompose gates in GM into base gates GB (NANDs and INVERTERs).

3. Calculate ideal locations of base gates of GB.

4. Map GB. The mapping cost is related to their ideal locations.

We will detail the methods of calculating ideal locations and technology map-

ping in the following subsections.
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3.3.1 Ideal locations

We know from [1] that optimal buffering to a line is to insert buffers with

equal distance, and the distance is
√

2RbCb

RC
. If we want to map a path that locations

of the input pins and output pins are known and fixed, it is intuitive that we map

the gates along the path in a way that they are evenly located between input pins

and output pins. Since the wire delay is proportional to square of the wirelength,

distributing wire loading evenly between the gates reduces the total delay along the

path. Furthermore, the buffering after mapping is easier because no gate drives a

large loading. Figure 3.9 shows this concept.

(a)

(c)

Optimal buffering

Non-optimal buffering

(b)

Input A

Input B

Input A

Input B

Output

Output

Figure 3.9: (a) Optimal buffering and Non-optimal buffering. (b) Distribute the
gates between input pins and output pins evenly. (c) Gates are not placed evenly.
The inverter needs to drive a large loading.

Given a part of netlist to be mapped and locations of input pins and output

pins, we calculate the ideal mapping positions of base gates by:
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1. For every paths from one input pin to one output pin, calculate the candidate

locations of base gates along the path as equal distance between the input pin

and the output pin.

2. If a base gate has more than one candidate locations, average these values to

get the final ideal location of the base gate.

An example of calculating ideal locations is shown in Figure 3.10.

(a)

Input A

Input B

Output

Input A

Input B
Output

(b)

Input A

Input B
Output

(c)

Figure 3.10: (a) Subject graph of the netlist without location information. (b)
When locations of inputs and outputs are known, calculate the ideal locations of
the base gates. (c) The resulted placement if the base gates are placed at their ideal
locations.
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3.3.2 Mapping

Our mapping algorithm uses dynamic programming method [9]. After de-

composing the extracted netlist and calculating ideal locations of the base gates, we

cut the network into a forest. Then we map each tree by the following cost function:

Cost(gi) =
∑

gj∈fanins of gi

(Cost(gj)− distance(gi, gj)) + distance(gi, fanout of gi)(3.2)

The locations of already mapped gates are real locations of spare cells, while

locations of the unmapped base gates are their ideal locations.

After remapping a part of the netlist, we apply STA to update the circuit

timing. We apply the remapping process until no timing violations left.

3.4 Time Complexity Analysis

In this section we analyze the timing complexity of phase 1 of our spare cells

selection algorithm.

There are P ECO paths of the netlist. Total gate count is V , and the number

of spare cells is N . If we can finish phase 1 in L iterations, and we keep at most

k solutions during each sizing and buffering operation, then the timing complexity

of each sizing and buffering operation is O(kN). If an ECO path has at most M

gates, the complexity of the DCP algorithm is O(kMN) . We apply DCP and STA

once in an iteration, and complexity of STA is O(V ). Hence the timing complexity

of phase 1 is O((kGN + V )L).
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3.5 Summary

We propose an algorithm which consists of gate sizing, buffer insertion, and

technology remapping to optimize the circuit timing. The whole spare cells selection

algorithm is illustrated in Figure 3.11.

Algorithm: Spare Cells Selection(G, GS, N)
N : set of all nets of the netlist;
G: set of all cells;
P : set of all ECO paths;
L: denied list;
GS : set of all spare cells;
NE : set of all nets on the ECO paths;
GE : set of all cells on the ECO paths;
1 begin
2 apply STA to identify all ECO paths P and GE , NE

3 While P is not empty (phase 1)
4 pi= the most critical path in P ;
5 apply DCP to pi;
6 apply STA to update all ECO paths P and circuit timing;
7 if delay of pi ≤ clock cycle
8 delete pi from P ;
9 if delay of pi is improved
10 put all paths in L to P and clear L;
11 else
12 delete pi from P and put it into L;
13 identify critical parts of the paths in L and remap them (phase 2);
14 apply STA to update the circuit timing;
15 end

Figure 3.11: Overview of the spare cells selection algorithm.
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Experiment Results

We implemented our algorithm in the C++ programming language on a 3.2GHz

Linux workstation with 3 GB memory. The benchmark circuits Case 1, Case 2,

Case 3, Case 4, and Case 5, are real industry designs.

In Table 4.1, “Case name” denotes the names of circuits, “Gate count” de-

notes the number of gates of the circuit, “# Spare cells” denotes number of spare

cells in the circuit, “# ECO path” denotes the number of timing violated paths

in the unoptimized circuit, “TNS” denotes the total negative slack, and “Max #

gates” denotes the largest number of gates along the path among all ECO paths.

The experimental results are shown in Table 4.2. We report the number of

ECO paths left, the total negative slack after optimization, the CPU time, and the

memory usage. The timing of the circuit is checked by PrimeTime.

We plot the chip layout through Figure 4.1 to Figure 4.5 for better visualiza-

tion. Figure 4.2 (a) shows all timing violated paths (ECO paths) in the Case 2, while

spare cells are plotted as points. Several gates on the ECO paths are misplaced and

cause long wires. This is identical to our analysis that a large wire loading results in

a large gate delay. The ECO paths after optimization by our algorithm are shown

in Figure 4.2 (b). Those paths are more compact because misplaced gates on the

paths are rewired by spare cells. Additionally, since we prefer gate sizing opera-
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tions to buffer insertion operations when optimizing timing, number of gate sizing

operations are larger than that of buffer insertion operations.

In Chapter 3.4, our timing complexity is O((kMN + V )L). The term kMN

is dominated by V if the number of spare cells and the number of gates along ECO

paths are much smaller compared to the gate count. Since STA is applied to the

whole netlist in every ireration, runtime is proportional to the gate count. Figure 4.6

shows the values of Case 1, Case 2, Case 3 and it confirms our analysis. The Case

4 is special that the ECO paths are seriously misplaced, and we need a longer time

to fix them. Runtime of the Case 5 is much longer than other cases because the

number of spare cells is much larger than other cases and even makes the term kMN

dominate the term V .

The experimental results demonstrate the effectiveness of our spare cells se-

lection algorithm for the ECO timing optimization problem.
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Case 1 28927 860 16 9.8 164

Case 2 200504 860 80 312 178

Case 3 91107 860 27 319 173

Case 4 18932 860 22 70 85

Case 5 38011 8600 137 161 72

Case

name

Max #

gates
Gate count

# ECO

path
TNS (ns)

# Spare

cells

Table 4.1: Statistics of the test cases.

Case 1 28927 16 9.8 0 0 7.7 36 100%

Case 2 200504 80 312 0 0 37 177 100%

Case 3 91107 27 319 0 0 17.4 78 100%

Case 4 18932 22 69.5 3 0.57 30 288 99.20%

Case 5 38011 137 161 0 0 2125.5 84 100%

avg 99.84%

Memory

(MB)

Comp.

rate

Case

name

Original DCP

Gate

count

# ECO

path

TNS

(ns)

# left ECO

path

TNS

(ns)

Run time

(s)

Table 4.2: Results of ECO timing optimization.
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(a)

(b)

TNS: 9.8

TNS: 0

Inserted buffer: 2

Sized gate: 3

Figure 4.1: (a) ECO paths of Case 1 before optimization. (b) ECO paths of Case 1
after optimization.
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(a)

(b)

TNS: 312

TNS: 0

Inserted buffer: 0

Sized gate: 13

Figure 4.2: (a) ECO paths of Case 2 before optimization. (b) ECO paths of Case 2
after optimization.
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(a)

(b)

TNS: 319

TNS: 0

Inserted buffer: 3

Sized gate: 7

Figure 4.3: (a) ECO paths of Case 3 before optimization. (b) ECO paths of Case 3
after optimization.
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(a)

(b)

TNS: 70

TNS: 0.57

Inserted buffer: 3

Sized gate: 25

Figure 4.4: (a) ECO paths of Case 4 before optimization. (b) ECO paths of Case 4
after optimization.
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(a)

(b)

TNS: 161

TNS: 0

Inserted buffer: 24

Sized gate: 98

Figure 4.5: (a) ECO paths of Case 5 before optimization. (b) ECO paths of Case 5
after optimization.
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Figure 4.6: Runtime versus gate count for all benchmarks.
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Figure 4.7: Memory usage versus gate count for all benchmarks.



Chapter 5

Conclusion and Future Work

In this thesis, we propose a spare cells selection algorithm to fix circuit timing after

placement. The algorithm consists of gate sizing, buffer insertion, and technology

remapping operations. The gate sizing and buffer insertion operations change the

netlist gate by gate, while the technology remapping fixes timing violations in a

more global view. Experimental results show that our algorithm can fix almost all

of the timing violations in a much shorter time than the manual method.

We leave the gates not on the ECO paths unchanged in our method to reduce

the problem size. A more general way of timing optimization using spare cells is

replacing gates on non-ECO paths with spare cells and using those replaced gates

as spare cells to optimize ECO paths. We will extend our work in this way later.

The functional change is a more difficult work than the timing optimization.

Since the changed functions may be very complex and timing issues of the changed

netlist also need to be considered, we have to carefully cope with logic and physical

co-optimization. This is the direction we plan to advance our research in the future.

49



Bibliography

[1] C. J. Alpert, J. Hu, S. S. Sapatnekar, and C. N. Sze, “Accurate Estimation

of Global Buffer Delay within a Floorplan,” in Proceeding of International

Conference on Computer Aided Design, pp. 1140-1146, 2004.

[2] S.-C. Chang, C.-T. Hsieh, and K.-C. Wu, “Re-synthesis for Delay Varia-

tion Tolerance,” in Proceeding of Design Automation Conference, pp. 814-819,

2004.

[3] K. Chaudhary and M. Pedram, “A Near Optimal Algorithm for Technology

Mapping Minimizing Area under Delay Constraints,” in Proceeding of Design

Automation Conference, pp. 492-498, 1992.

[4] J. Cong and Y. Ding, “An Optimal Technology Mapping Algorithm for De-

lay Optimization in Lookup-table Based FPGA Designs,” in Proceeding of

International Conference on Computer Aided Design, pp. 48-53, 1992.

[5] Faraday Technology Corporation, http://www.faraday-tech.com/index.html

[6] L. P. P P. van Ginneken. “Buffer Placement in Distributed RC-tree Networks

for Minimal Elmore Delay,” in Proceeding of International Symposium on Cir-

cuits and Systems, pp. 865-868, 1990.

[7] Z. Li, W. Shi, “An O(mn) Time Algorithm for Optimal Buffer Insertion of Nets

With m Sinks,” in Proceeding of Asia and South Pacific Design Automation

Conference, pp. 320-325, 2006.

50



51

[8] D.-J. Jongeneel, Y. Watanbe, R. K. Brayton, and R. Otten, “Area and Search

Space Control for Technology Mapping,” in Proceeding of Design Automation

Conference, pp. 86-91, 2000.

[9] K.Keutzer, “DAGON: Technology Binding and Local Optimization by DAG

Matching,” in Proceeding of Design Automation Conference, pp. 617-623,

1987.

[10] Y. Kukimoto, R. K. Brayton, and P. Sawkar, “Delay-optimal Technology Map-

ping by DAG Covering,” in Proceeding of Design Automation Conference, pp.

348-351, 1998.

[11] T. Kutzschebauch and L. Stok, “Congestion Aware Layout Driven Logic Syn-

thesis,” in Proceeding of International Conference on Computer Aided Design,

pp. 216-223, 2001.

[12] T. Kutzschebauch and L. Stok, “Layout Driven Decomposition with Conges-

tion Consideration,” in Proceeding of Design Automation and Test in Europe,

pp.672-676, 2002.

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic Decomposi-

tion during Technology Mapping,” In Proceeding of International Conference

on Computer Aided Design, pp. 264-271, 1995.

[14] I.-M. Liu, A. Aziz, D.F. Wong, and H. Zhou, “An Efficient Buffer Insertion Al-

gorithm for Large Networks Based on Lagrangian Relaxation,” In Proceeding

of International Conference on Computer Design, pp. 614-621, 1999.

[15] I.-M. Liu, A. Aziz, and D.F. Wong, “Meeting Delay Constraints in DSM by

Minimal Repeater Insertion,” In Proceeding of Design Automation and Test

in Europe, pp. 436-440, 2000.



52

[16] Q. Liu and M. Marek-Sadowska, “Pre-layout Wire Length and Congestion

Estimation,” In Proceeding of Design Automation Conference, pp. 582-587,

2004.

[17] Q. Liu and M. Marek-Sadowska, “Technology Mapping: Wire Length

Prediction-based Technology Mapping and Fanout Optimization,” in Proceed-

ing of International Symposium on Physical Design, pp. 145-151, 2005.

[18] J. Lou, W. Chen, and M. Pedram, “Concurrent Logic Restructuring and Place-

ment for Timing Closure”, in Proceeding of International Conference on Com-

puter Aided Design, pp. 31-36, 1999.

[19] A. Lu, G. Stenz, and F. M. Johannes, “Technology Mapping for Minimizing

Gate and Routing Area,” in Proceeding of Design Automation and Test in

Europe, pp. 664-669, 1998.

[20] Y. Matsunaga, “On Accelerating Pattern Matching for Technology Mapping,”

in Proceeding of International Conference on Computer Aided Design, pp. 118-

122, 1998.

[21] A. Mishchenko, X. Wang, and T. Kam, “A New Enhanced Constructive De-

composition and Mapping Algorithm,” in Proceeding of Design Automation

Conference, pp. 143-148, 2003.

[22] M. Murofushi, T. Ishioka, M. Murakata and T. Mitsuhashi, “Layout Driven

Re-synthesis for Low Power Consumption LSIs”, in Proceeding of Design Au-

tomation Conference, pp. 666-669, 1997.

[23] D. Pandini, L. T. Pileggi, and A. J. Strojwas, “Understanding and Addressing

the Impact of Wiring Congestion during Technology Mapping,” in Proceeding

of International Symposium on Physical Design, pp. 131-136, 2002.



53

[24] D. Pandini, L. Pileggi, and A. Strojwas, “Congestion-aware Logic Synthesis,”

in Proceeding of Design Automation and Test in Europe, pp. 664-671, 2002.

[25] M. Pedram and N. Bhat, “Layout Driven Technology Mapping,” in Proceeding

of Design Automation Conference, pp. 99-105, 1991.

[26] R. S. Shelar, P. Saxena, X. Wang, and S. S. Sapatnekar, “Technology Map-

ping: An Efficient Technology Mapping Algorithm Targeting Routing Con-

gestion under Delay Constraints,” in Proceeding of International Symposium

on Physical Design, pp. 137-144, 2005.

[27] W. Shi and Z. Li, “An O(nlogn) Time Algorithm for Optimal Buffer Insertion,”

in Proceeding of Design Automation Conference, pp. 580-585, 2003.

[28] C. N. Sze, C. J. Alpert, J. Hu, and W. Shi, “Path Based Buffer Insertion,” in

Proceeding of Design Automation Conference, pp. 509-514, 2005.

[29] M. Zhao and S. S. Sapatnekar, “A New Structural Pattern Matching Algo-

rithm for Technology Mapping,” in Proceeding of Design Automation Confer-

ence, pp. 371-376, 2001.


